Lycée Secondaire Ibn Charaf	Épreuve : Mathématiques
Devoir de contrôle n° 3	Durée : 2 H
	Coefficient: 3
Section : 4 ^{ème} Sciences expérimentales 1&2	Année Scolaire : 2015-2016 Prof./ Maayoufi

Le sujet comporte deux pages numérotées de 1/2 à 2/2. Il sera tenu compte du soin apporté à la rédaction. Le barème est approximatif.

Exercice 1 (4points)

Partie I:

Indiquer, en le justifiant, la réponse exacte :

- 1) Soit les points A, B et C non alignés de l'espace &. L'ensemble des points M tels que : $\overrightarrow{AB} \wedge \overrightarrow{AM} = \overrightarrow{0}$ est :
 - a) Le plan passant par A et perpendiculaire à (AB) b) La droite (AB) c) {A;B}.
- 2) L'ensemble des points M de \mathscr{E} tels que : $(\overrightarrow{AB} \wedge \overrightarrow{AC}).\overrightarrow{AM} = 0$ est :

a) le plan (ABC) b) La droite $D(a, \vec{u})$, $\vec{u} = \overrightarrow{AB} \wedge \overrightarrow{AC}$

3) Soit $F(x) = \int_0^{\sin x} \sqrt{1-t^2} dt$ définie sur $\left[0; \frac{\pi}{2}\right]$, alors :

a) $F'(x) = \sqrt{1 - \sin^2 x}$

b) $F'(x) = 2\sin x \cos x$ c) $F'(x) = \cos^2 x$.

4) Soit $f(x) = \frac{1}{x \ln x}$, $I = [e, e^2]$; la valeur moyenne de f sur I:

a) $\bar{f} = \frac{\ln 2}{e(e-1)}$ b) $\bar{f} = \frac{-1}{e-1}$ c) $\bar{f} = \frac{1}{e-1}$.

Partie II:

Répondre par vrai ou faux en justifiant la réponse :

- 1) Si f est continue sur [a,b] alors $\bar{f} = \int_{a}^{b} |f(x)| dx$.
- 2) La dérivée de la fonction définie sur \mathbb{R} par : $f(x) = \ln(2x^2 + 1)$ égale à $f'(x) = \frac{2}{2x^2 + 1}$.
- 3) L'approximation affine de la fonction e^h pour h proche de 0 est h+1.
- 4) Soit le plan P: 2x-y+z-2=0 et soit les points A(-2,1,1) et B(2,-1,3); alors (AB) $\perp P$.

Exercice 2 (10points)

I/ Soit f la fonction définie par : $f(x) = \sqrt{\ln^2(x) - 1}$.

- 1) a) Étudier le signe de la fonction $g(x) = \ln^2(x) 1$.
 - b) Déterminer alors le domaine de définition de la fonction f.
- 2) a) Calculer $\lim_{x \to e} \left[\frac{\ln(x) 1}{x e} \right]$ et $\lim_{x \to \frac{1}{e}} \left| \frac{\ln(x) + 1}{x 1} \right|$.

b) Étudier la dérivabilité de f à droite en e, en précisant la demi-tangente à \mathscr{C}_f au point A(e,0)

1/2

- c) Étudier la dérivabilité d f à gauche en $\frac{1}{e}$ et préciser la demi-tangente à \mathscr{C}_f au point $B(\frac{1}{e},0)$.
- 3) a) Dresser le tableau de variation de f.
 - **b**) Étudier les branches infinies à \mathscr{C}_f ; puis tracer la courbe \mathscr{C}_f dans un repère orthonormé (O,\vec{i},\vec{j}) .

II/ Soit les fonctions f et g définies sur \mathbb{R} par : $f(x) = (2-x)(1+e^x)$ et $g(x) = e^{-x} + x - 1$.

- 1) a) Étudier les variations de g. En déduire le signe de g(x).
 - **b)** Montrer que f'(x) = $-e^x$.g(x), puis dresser le tableau de variation de f.
- 2) a) Montrer que la droite D : y = -x+2 est une asymptote oblique à \mathcal{E}_f .
 - **b**) Préciser la position relative de \mathscr{C}_f par rapport à D.
 - c) Tracer \mathscr{C}_f et D dans un repère orthonormé (O, \vec{i}, \vec{j}) .
- 3) Soit $m \in]-\infty;2]$, $\mathscr{M}(m)$ désigne l'aire de la partie du plan limitée par \mathscr{C}_f , D; et les droites d'équations respectives x=2 et x=m. Calculer $\mathscr{M}(m)$ en fonction de m. En déduire $\lim_{m \to -\infty} \mathscr{M}(m)$.
- 4) a) Montrer que f réalise une bijection de \mathbb{R} sur \mathbb{R} .
 - **b**) Tracer $\mathscr{C}_{f^{-1}}$ dans le même repère.
 - c) Calculer l'aire de la partie du plan limitée par $\mathscr{C}_{f^{-1}}$, D; et les droites d'équations respectives x=0 et y=0.

Exercice 3 (6points)

L'espace \mathscr{E} est rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$.

On considère les points A(-1,0,1), B(1,4,-1), C(3,-4,-3) et D(4,0,4).

- 1) a) Montrer que les points A, B, C et D ne sont pas coplanaires.
 - b) Montrer que le triangle ABC est rectangle en A.
- 2) a) Calculer $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
 - **b**) En déduire une équation du plan (ABC).
- **3**) **a**) Calculer d(O, (AB))
 - **b**) Calculer le volume \mathcal{V} du tétraèdre ABCD.
- 4) Soit S la sphère de diamètre [AB].
 - a) Former une équation de S. I est le centre de cette sphère.
 - **b**) Soit \mathcal{P} le plan d'équation : x + y z + 2 = 0. Calculer d(I, \mathcal{P}). I est le centre de la sphère \mathcal{S} .
 - c) Déterminer alors le centre H et le rayon r du cercle \mathcal{C} intersection de \mathcal{P} et \mathcal{S} .